Agent-Based Modelling and Burglary in Leeds

Nick Malleson
School of Geography
University of Leeds

N.Malleson06@leeds.ac.uk
Outline

Modelling crime: the problems

Agent-based modelling and crime

The model

Conclusion

Future work
Journey to Crime

Local in nature

Anchor points

Environmental Criminology

- Opportunity Theory
 - attractiveness and accessibility
- Routine Activities Theory
 - convergence in space and time of a motivated offender and a victim in the absence of a capable guardian
Burglary Locations
Problems with statistical methods

Spatial Interaction / Microsimulation

- Problems investigating human behaviour
- Problems with predictive analyses
Why ABM?

More “natural” for social systems

Investigate interactions at micro level

Ideal for routine activities theory

Main problem:
 • Modelling “soft” human factors
Study Area: Leeds

North-East England
(West Yorkshire County)

700,000 people

Large University and student population
Study Area: Leeds

Indices of Multiple Deprivation

- Health/Disability
- Employment
- Income
- Education/skills
- Living environment
- Barriers to services
Safer Leeds

2001-2004 Crime Data
• Extract burglaries in Leeds

Census data - http://www.census.ac.uk/casweb/

Boundary data - http://edina.ac.uk/ukborders/
Simple introductory model - predict where offenders travel to

Create an agent for each crime

• Represent crime events, not offenders
• “Home ward” - known
• “Crime ward” - unknown

To choose a crime ward:

• Each agent assigns an overall attractiveness to each ward
• Most likely to choose most attractive ward
Two Crime Theories

Opportunity Theory

\[L_i = \frac{A \times socio\text{economic}_i + B \times num\text{Students}_i + C \times thouse_i}{D \times distance(i, h)} \]

Routine Activities Theory

- Improved distance decay
- OA level

\[L_i = \frac{A \times socio\text{economic}_i + B \times num\text{Students}_i}{C \times distance(i, h)^D + E \times distance(i, h) + F} \]
<table>
<thead>
<tr>
<th>Nu...</th>
<th>Origin</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aireborough</td>
<td>33</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Armley</td>
<td>3</td>
<td>70</td>
<td>2</td>
<td>3</td>
<td>17</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Barwick and Ki...</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Beeston</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>39</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Bramley</td>
<td>8</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>75</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Burmantofts</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>55</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>Chapel Allerton</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>56</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>City and Holbeck</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>31</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>90</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>Cookridge</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>81</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Garforth and S...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Halton</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Harehills</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>50</td>
<td>17</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>69</td>
</tr>
<tr>
<td>13</td>
<td>Headingley</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Horsforth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Hunslet</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>Kirkstall</td>
<td>2</td>
<td>37</td>
<td>0</td>
<td>6</td>
<td>27</td>
<td>2</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>Middleton</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Model Error

Standardised Root Mean Square Error

- Compare observed and expected matrices
- 0 indicates identical matrices

\[
\sqrt{\frac{\sum (y_i \bar{y} - y_i)^2}{n}}
\]
Results - SRMSE

Best SRMSE:

- 1.3
- Using Routine Activities on Output Area data

<table>
<thead>
<tr>
<th>Model</th>
<th>Spatial Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ward</td>
</tr>
<tr>
<td>Opppportunity Theory</td>
<td>2.2</td>
</tr>
<tr>
<td>Routine Activities Theory</td>
<td>2</td>
</tr>
</tbody>
</table>
Results – Current Analyses

Difference in observed and predicted crime levels

- Headingley
- Halton
Results – “What-if” Analyses

Clarence Dock
Simple Model Conclusions

Support for Routine Activities Theory

Support short offender travel distance (~3 km)

Model able to perform explanatory and predictive analyses
Future work

More complex ABM

• Victims, capable guardians etc
• Detailed environment
 - Perceptions of space: cognitive models
• Human Behaviour
• Social networks
Future work - detailed environment

Masterap
• Ordinance survey data
• Houses, gardens, roads, rivers etc.

Incorporate with a GIS
Thankyou

Paper
 • Journal undecided

Questions?
Suggestions?

N.Malleson06@leeds.ac.uk
http://www.geog.leeds.ac.uk/people/n.malleson/